

LA-UR-21-27868

Approved for public release; distribution is unlimited.

Title: Expansion of Organic Scintillator Capabilities for DRiFT Software

Author(s): Mullen, Austin Daniel

Andrews, Madison Theresa Woldegiorgis, Surafel Fantaye

Intended for: For end of internship presentation and distribution to external

colleagues.

Issued: 2021-08-05

Expansion of Organic Scintillator Capabilities for DRiFT Software

Austin Mullen^{1,2}, Madison Andrews¹, Surafel Woldegiorgis¹

¹Los Alamos National Laboratory

ALDX

XCP-7: Radiation Transport Applications

²University of California, Berkeley

LA-UR-XXXXXX

Who am I?

- Educational Background
 - B.S. in Nuclear Engineering from University of Tennessee, Knoxville (2018)
 - M.S. in Nuclear Engineering from University of California, Berkeley (2020)
 - Prospective PhD in Nuclear Engineering from University of California, Berkeley (~2022)
- Division: ALDX
 - ^o Group: XCP-7
 - O Mentor: Madison Andrews
- Research
 - DRiFT software development
 - O PhD Research: Antineutrino Detection

Overview

- Organic Scintillators Overview
- What is DRiFT?
- Recent Developments in DRiFT
- Future Prospects and Plans

Organic Scintillators

How do they work and why do we care?

Cross Section of an Organic Scintillator Detector

Organic Scintillators: Overview

Scintillator **absorbs** energy from radiation and **de-excites** by emitting visible light

By National Nuclear Security Administration / Nevada Site Office - https://commons.wikimedia.org/w/index.php?curid=20990804

Organic scintillator is **low-cost** and easy to use in **bulk** and in various **detector geometries**, leading to many **safeguards applications**

Organic Scintillators: Emission Spectrum

By Sobarwiki, https://commons.wikimedia.org/w/index.php?curid=29474504

https://eljentechnology.com/products/liquid-scintillators/ej-301-ej-309

Stokes shift limits selfabsorption, emission spectrum varies between scintillators

Organic Scintillators: Light Yield

Radiation of different stopping power creates characteristically different excitations

- Protons, deuterons, and electrons will all produce different amounts of light per MeV deposited
- Energy depositions are reported in MeV electron equivalent (MeVee)

Organic Scintillators: Scintillation Efficiency

How efficiently is energy converted into light?

- De-excitation can occur without emission of optical photons, called quenching
- Impurities in the scintillator will often increase quenching
- Usually reported in photons/MeVee

Organic Scintillators: Pulse Shape Discrimination

Protons create more long-lived phosphorescence creating a distinct, longer tail than electrons

Allows for separation of neutron events and gamma events based on **pulse shape**

PMTs: Quantum Efficiency

Visible photons ───── Electrons

Depends strongly on wavelength of the light

PMT selection should be matched to scintillator choice

THBV3 0704EA

PMTs: Gain

THBV3 0413EA

Hamamatsu Photonics, 2007

Digitizer Effects: Principles

Digitizer Effects: Clipping

Digitizers have a maximum voltage they can record; too large of a pulse may be **clipped**!

Digitizer Effects: Pileup

Two pulses close together will cause **pileup** and be recorded as one!

DRIFT

A Detector Response Function Toolkit

MCNP®6.2: A Powerful Tool for Radiation Transport Simulations

Excellent simulation of neutron (and gamma-electron) interaction in materials

but

limited capability to model realistic detector response to these interactions!

DRiFT: Goals

- Post-processes MCNP output to create realistic detector response
- Modular to allow user customization
- Simple framework for addition of desired scintillators and PMTs

DRiFT: Process

DRiFT: User Input

[global] modeltype=event datasource=mcnp ptrac type=bin #Name of the PTRAC file you want to process datafile=omcnp p #datafile is the file name of the mcnp ptrac output det cells=1 [SourceInformation] call=SourceInformation multi src=yes [Scintillation] call=Scintillation detector=EJ301 optical transport=0.6 pmt type=9821B voltage=1500 divider option=B [Digitizer] call=Digitizer voltage range =2.0 digitizer samples=256 resolution=16384 ter res = 50 DC offset = 0.1start point = 0.1 digitizer rate=500.e6 trigger ADC=70 PSD=yes [WriteOutput] call=WriteOutput outputs=source e count det pulse det cell corr count time PSD cells history output=output.txt

[global]: What should DRiFT look for in the PTRAC file?

[SourceInformation]: Should DRiFT track source particles (for correlated events)?

[Scintillation]: How should the detector and PMT be modeled?

[Digitizer]: How should the waveforms be digitized?

[WriteOutput]: What information should be output?

Timing (Source Activity) information can also be defined

DRiFT: Output

source_e (MeV)	NPS	det_pulse (MeVee)	det_cell	corr_count	time (s)	PSD	cells_history
1.63259	71	0.133547	1	no	7.39562e-09	0.212628	2 1
1.814	354	0.255438	1	no	3.94077e-09	0.216505	2 1
3.29549	640	0.484216	1	no	3.26886e-09	0.234059	2 1
1.66616	763	0.105647	1	no	4.30608e-09	0.169014	2 1
0.879835	774	0.0920073	1	no	9.41205e-09	0.218329	2 1
2.02652	1001	0.440321	1	no	4.41343e-09	0.255421	2 1
2.76593	1016	0.606231	1	no	3.3331e-09	0.234813	2 1

What outputs are printed is configurable in the input file

A sample waveform can also be printed, if desired

DRiFT: Example Waveforms

Recent Developments

An Expansion of Organic Scintillator Options and Capabilities

Expanded Capabilities

https://eljentechnology.com/products/liquid-scintillators/ej-315

Protium

Deuterium

Dirk Hünniger- https://commons.wikimedia.org/w/index.php?curid=46295940

Light output and pulse shape looks different for recoil deuterons than protons

Additional Scintillators and PMTs

- 7 new scintillators (including 3 deuterated scintillators) with emission spectra, light outputs, and scintillation efficiencies
- 6 new PMTs with gain curves (for both A and B dividers) and quantum efficiency (often of several variants)
- Added documentation to guide users on adding their own scintillators and PMTs

Expanded Test Cases

- Cleaned, developed and expanded 4 test cases of various detectors exposed to different radioactive sources
- Created 3 new test cases demonstrating:
 - A comparison between newly added scintillators
 - The new deuterated scintillator capability
 - How to implement new scintillators and PMTs using data tables

Summary of Results

Example deuterated scintillator test case shows effect of deuterium on response

DRiFT shows how over- or under-biasing the PMT will distort the spectrum (measurements are at 1500V)

Other Notable Work

- Expanded documentation, particularly on the process of adding new capabilities and on running test cases
- Created a new version of the code intended for public release
- Removed dependency of new version on ROOT to improve usability
- Began work on creating installation scripts for the code to operate on different operating systems

Future Work

- Release of DRiFT code on Github for wider use
- Development and expansion of semiconductor and gas detector capabilities
- Further development and refinement of scintillation, PMT, and digitizer response

Disclaimer and Auspices

This work was supported by Laboratory Technology Evaluation & Demonstration Funding.

This work was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, under contract DE-AC52-06NA25396. DRiFT contributors include Madison Andrews, Surafel Woldegiorgis, Cameron Bates, Edward McKigney, and Tyler Jordan.

Contact Information

Austin Mullen
austin_mullen@lanl.gov
austin_mullen@berkeley.edu

References

- 1. Glenn Knoll, *Radiation Detection and Measurement* (New York: John Wiley & Sons, Inc, 2000).
- 2. T.A. Laplace et al, Comparative scintillation performance of EJ-309, EJ-276, and a novel organic glass" JINST 15 (2020)
- 3. M.L. Roush, M.A. Wilson, W.F. Hornyak, "Pulse Shape Discrimination." NIM 31:1 (1964).
- 4. Hamamatsu Photonics, "Photomultiplier Tubes: Basics and Applications." 3rd Edition (2007).
- 5. J.T. Goorely et al. "Initial MCNP6 Release Overview MCNP6 Version 1.0" Technical Report, LA-UR-13-22934, Los Alamos National Laboratory (2013).
- 6. M.T. Andrews, C.R. Bates, E.A. McKigney, C. Solomon, and A. Sood, "Organic Scintillator detector response simulations with DRIFT" Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 830, 466-472 (2016).